How to check for NaN in golang
Use math.IsNaN(…) for that: playground
Use math.IsNaN(…) for that: playground
After looking into this some more, it looks like signaling_NaN is useless as provided. If floating point exceptions are enabled, then calling it counts as processing a signaling NaN, so it immediately raises an exception. If floating point exceptions are disabled, then processing a signaling NaN automatically demotes it to a quiet NaN, so signaling_NaN … Read more
null values represents “no value” or “nothing”, it’s not even an empty string or zero. It can be used to represent that nothing useful exists. NaN stands for “Not a Number”, it’s usually the result of a mathematical operation that doesn’t make sense, e.g. 0.0/0.0. One possible way to handle null values is to remove … Read more
Pandas to the rescue, use na_rep to fix your own representation for NaNs. df.to_csv(‘file.csv’, na_rep=’NULL’) file.csv ,index,x,y,z 0,0,1.0,NULL,2 1,1,NULL,3.0,4
I came up with assertTrue(math.isnan(nan_value))
Try pd.isna(): In [7]: pd.isna(df.iloc[1,0]) Out[7]: True AKA pd.isnull
Hrm, it appears I can use a masked array to do this: masked_array = np.ma.array (a, mask=np.isnan(a)) cmap = matplotlib.cm.jet cmap.set_bad(‘white’,1.) ax.imshow(masked_array, interpolation=’nearest’, cmap=cmap) This should suffice, though I’m still open to suggestions. :]
Assuming your DataFrame is in df: df.Temp_Rating.fillna(df.Farheit, inplace=True) del df[‘Farheit’] df.columns=”File heat Observations”.split() First replace any NaN values with the corresponding value of df.Farheit. Delete the ‘Farheit’ column. Then rename the columns. Here’s the resulting DataFrame: File heat Observations 0 1 YesQ 75 1 1 NoR 115 2 1 YesA 63 3 1 NoT 41 … Read more
I believe DataFrame.fillna() will do this for you. Link to Docs for a dataframe and for a Series. Example: In [7]: df Out[7]: 0 1 0 NaN NaN 1 -0.494375 0.570994 2 NaN NaN 3 1.876360 -0.229738 4 NaN NaN In [8]: df.fillna(0) Out[8]: 0 1 0 0.000000 0.000000 1 -0.494375 0.570994 2 0.000000 0.000000 … Read more
Use math.isnan: >>> import math >>> x = float(‘nan’) >>> math.isnan(x) True