Why is numpy.array so slow?

Numpy is optimised for large amounts of data. Give it a tiny 3 length array and, unsurprisingly, it performs poorly.

Consider a separate test

import timeit

reps = 100

pythonTest = timeit.Timer('a = [0.] * 1000000')
numpyTest = timeit.Timer('a = numpy.zeros(1000000)', setup='import numpy')
uninitialised = timeit.Timer('a = numpy.empty(1000000)', setup='import numpy')
# empty simply allocates the memory. Thus the initial contents of the array 
# is random noise

print 'python list:', pythonTest.timeit(reps), 'seconds'
print 'numpy array:', numpyTest.timeit(reps), 'seconds'
print 'uninitialised array:', uninitialised.timeit(reps), 'seconds'

And the output is

python list: 1.22042918205 seconds
numpy array: 1.05412316322 seconds
uninitialised array: 0.0016028881073 seconds

It would seem that it is the zeroing of the array that is taking all the time for numpy. So unless you need the array to be initialised then try using empty.

Leave a Comment

deneme bonusu veren sitelerbahis casinomakrobetceltabetpinbahispolobetpolobet girişpinbahis girişmakrobet girişpulibet girişmobilbahis girişkolaybet giriş