What’s the most efficient way to filter a DataFrame
My code (following the description of your first method) runs normally in Spark 1.4.0-SNAPSHOT on these two configurations: Intellij IDEA’s test Spark Standalone cluster with 8 nodes (1 master, 7 worker) Please check if any differences exists val bc = sc.broadcast(Array[String](“login3”, “login4”)) val x = Array((“login1”, 192), (“login2”, 146), (“login3”, 72)) val xdf = sqlContext.createDataFrame(x).toDF(“name”, … Read more