What is the difference between Dataset.from_tensors and Dataset.from_tensor_slices?

from_tensors combines the input and returns a dataset with a single element:

>>> t = tf.constant([[1, 2], [3, 4]])
>>> ds = tf.data.Dataset.from_tensors(t)
>>> [x for x in ds]
[<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
 array([[1, 2],
        [3, 4]], dtype=int32)>]

from_tensor_slices creates a dataset with a separate element for each row of the input tensor:

>>> t = tf.constant([[1, 2], [3, 4]])
>>> ds = tf.data.Dataset.from_tensor_slices(t)
>>> [x for x in ds]
[<tf.Tensor: shape=(2,), dtype=int32, numpy=array([1, 2], dtype=int32)>,
 <tf.Tensor: shape=(2,), dtype=int32, numpy=array([3, 4], dtype=int32)>]

Leave a Comment

Hata!: SQLSTATE[HY000] [1045] Access denied for user 'divattrend_liink'@'localhost' (using password: YES)