Pandas reading csv as string type

Update: this has been fixed: from 0.11.1 you passing str/np.str will be equivalent to using object. Use the object dtype: In [11]: pd.read_csv(‘a’, dtype=object, index_col=0) Out[11]: A B 1A 0.35633069074776547 0.745585398803751 1B 0.20037376323337375 0.013921830784260236 or better yet, just don’t specify a dtype: In [12]: pd.read_csv(‘a’, index_col=0) Out[12]: A B 1A 0.356331 0.745585 1B 0.200374 0.013922 … Read more

Import pandas dataframe column as string not int

Just want to reiterate this will work in pandas >= 0.9.1: In [2]: read_csv(‘sample.csv’, dtype={‘ID’: object}) Out[2]: ID 0 00013007854817840016671868 1 00013007854817840016749251 2 00013007854817840016754630 3 00013007854817840016781876 4 00013007854817840017028824 5 00013007854817840017963235 6 00013007854817840018860166 I’m creating an issue about detecting integer overflows also. EDIT: See resolution here: https://github.com/pydata/pandas/issues/2247 Update as it helps others: To have all columns … Read more

Convert Pandas column containing NaNs to dtype `int`

In version 0.24.+ pandas has gained the ability to hold integer dtypes with missing values. Nullable Integer Data Type. Pandas can represent integer data with possibly missing values using arrays.IntegerArray. This is an extension types implemented within pandas. It is not the default dtype for integers, and will not be inferred; you must explicitly pass … Read more

Hata!: SQLSTATE[HY000] [1045] Access denied for user 'divattrend_liink'@'localhost' (using password: YES)