Fill in missing pandas data with previous non-missing value, grouped by key
You could perform a groupby/forward-fill operation on each group: import numpy as np import pandas as pd df = pd.DataFrame({‘id’: [1,1,2,2,1,2,1,1], ‘x’:[10,20,100,200,np.nan,np.nan,300,np.nan]}) df[‘x’] = df.groupby([‘id’])[‘x’].ffill() print(df) yields id x 0 1 10.0 1 1 20.0 2 2 100.0 3 2 200.0 4 1 20.0 5 2 200.0 6 1 300.0 7 1 300.0