Sample from multivariate normal/Gaussian distribution in C++

Since this question has garnered a lot of views, I thought I’d post code for the final answer that I found, in part, by posting to the Eigen forums. The code uses Boost for the univariate normal and Eigen for matrix handling. It feels rather unorthodox, since it involves using the “internal” namespace, but it works. I’m open to improving it if someone suggests a way.

#include <Eigen/Dense>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/normal_distribution.hpp>    

/*
  We need a functor that can pretend it's const,
  but to be a good random number generator 
  it needs mutable state.
*/
namespace Eigen {
namespace internal {
template<typename Scalar> 
struct scalar_normal_dist_op 
{
  static boost::mt19937 rng;    // The uniform pseudo-random algorithm
  mutable boost::normal_distribution<Scalar> norm;  // The gaussian combinator

  EIGEN_EMPTY_STRUCT_CTOR(scalar_normal_dist_op)

  template<typename Index>
  inline const Scalar operator() (Index, Index = 0) const { return norm(rng); }
};

template<typename Scalar> boost::mt19937 scalar_normal_dist_op<Scalar>::rng;

template<typename Scalar>
struct functor_traits<scalar_normal_dist_op<Scalar> >
{ enum { Cost = 50 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
} // end namespace internal
} // end namespace Eigen

/*
  Draw nn samples from a size-dimensional normal distribution
  with a specified mean and covariance
*/
void main() 
{
  int size = 2; // Dimensionality (rows)
  int nn=5;     // How many samples (columns) to draw
  Eigen::internal::scalar_normal_dist_op<double> randN; // Gaussian functor
  Eigen::internal::scalar_normal_dist_op<double>::rng.seed(1); // Seed the rng

  // Define mean and covariance of the distribution
  Eigen::VectorXd mean(size);       
  Eigen::MatrixXd covar(size,size);

  mean  <<  0,  0;
  covar <<  1, .5,
           .5,  1;

  Eigen::MatrixXd normTransform(size,size);

  Eigen::LLT<Eigen::MatrixXd> cholSolver(covar);

  // We can only use the cholesky decomposition if 
  // the covariance matrix is symmetric, pos-definite.
  // But a covariance matrix might be pos-semi-definite.
  // In that case, we'll go to an EigenSolver
  if (cholSolver.info()==Eigen::Success) {
    // Use cholesky solver
    normTransform = cholSolver.matrixL();
  } else {
    // Use eigen solver
    Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigenSolver(covar);
    normTransform = eigenSolver.eigenvectors() 
                   * eigenSolver.eigenvalues().cwiseSqrt().asDiagonal();
  }

  Eigen::MatrixXd samples = (normTransform 
                           * Eigen::MatrixXd::NullaryExpr(size,nn,randN)).colwise() 
                           + mean;

  std::cout << "Mean\n" << mean << std::endl;
  std::cout << "Covar\n" << covar << std::endl;
  std::cout << "Samples\n" << samples << std::endl;
}

Leave a Comment

Hata!: SQLSTATE[HY000] [1045] Access denied for user 'divattrend_liink'@'localhost' (using password: YES)