You can try first set_index
of all dataframes in comprehension
and then use concat
with remove last level of multiindex
in columns:
print d
{'17012016': Fruit Price
0 Orange 7
1 Apple 8
2 Pear 9, '16012016': Fruit Price
0 Orange 4
1 Apple 5
2 Pear 6, '15012016': Fruit Price
0 Orange 1
1 Apple 2
2 Pear 3}
d = { k: v.set_index('Fruit') for k, v in d.items()}
df = pd.concat(d, axis=1)
df.columns = df.columns.droplevel(-1)
print df
15012016 16012016 17012016
Fruit
Orange 1 4 7
Apple 2 5 8
Pear 3 6 9