You might be interested in pd.cut
:
>>> df.groupby(pd.cut(df["B"], np.arange(0, 1.0+0.155, 0.155))).sum()
A B
B
(0, 0.155] 2.775458 0.246394
(0.155, 0.31] 1.123989 0.471618
(0.31, 0.465] 2.051814 1.882763
(0.465, 0.62] 2.277960 1.528492
(0.62, 0.775] 1.577419 2.810723
(0.775, 0.93] 0.535100 1.694955
(0.93, 1.085] NaN NaN
[7 rows x 2 columns]