I think you need reset_index
:
df3 = df3.reset_index()
Possible solution, but I think inplace
is not good practice, check this and this:
df3.reset_index(inplace=True)
But if you need new column, use:
df3['new'] = df3.index
I think you can read_csv
better:
df = pd.read_csv('university2.csv',
sep=";",
skiprows=1,
index_col="YYYY-MO-DD HH-MI-SS_SSS",
parse_dates="YYYY-MO-DD HH-MI-SS_SSS") #if doesnt work, use pd.to_datetime
And then omit:
#Changing datetime
df['YYYY-MO-DD HH-MI-SS_SSS'] = pd.to_datetime(df['YYYY-MO-DD HH-MI-SS_SSS'],
format="%Y-%m-%d %H:%M:%S:%f")
#Set index from column
df = df.set_index('YYYY-MO-DD HH-MI-SS_SSS')
EDIT: If MultiIndex or Index
is from groupby operation, possible solutions are:
df = pd.DataFrame({'A':list('aaaabbbb'),
'B':list('ccddeeff'),
'C':range(8),
'D':range(4,12)})
print (df)
A B C D
0 a c 0 4
1 a c 1 5
2 a d 2 6
3 a d 3 7
4 b e 4 8
5 b e 5 9
6 b f 6 10
7 b f 7 11
df1 = df.groupby(['A','B']).sum()
print (df1)
C D
A B
a c 1 9
d 5 13
b e 9 17
f 13 21
Add parameter as_index=False
:
df2 = df.groupby(['A','B'], as_index=False).sum()
print (df2)
A B C D
0 a c 1 9
1 a d 5 13
2 b e 9 17
3 b f 13 21
Or add reset_index
:
df2 = df.groupby(['A','B']).sum().reset_index()
print (df2)
A B C D
0 a c 1 9
1 a d 5 13
2 b e 9 17
3 b f 13 21