How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument ‘labels’ will be keyword-only

From the documentation, pandas.DataFrame.drop has the following parameters:

Parameters

  • labels: single label or list-like Index or column labels to drop.

  • axis: {0 or ‘index’, 1 or ‘columns’}, default 0 Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).

  • index: single label or list-like Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).

  • columns: single label or list-like Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).

  • level: int or level name, optional For MultiIndex, level from which the labels will be removed.

  • inplace: bool, default False If False, return a copy. Otherwise, do operation inplace and return None.

  • errors: {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and only existing labels are dropped.

Moving forward, only labels (the first parameter) can be positional.


So, for this example, the drop code should be as follows:

df = df.drop('market', axis=1)

or (more legibly) with columns:

df = df.drop(columns="market")

Leave a Comment

Hata!: SQLSTATE[HY000] [1045] Access denied for user 'divattrend_liink'@'localhost' (using password: YES)