You can check that using to_numeric
and coercing errors:
pd.to_numeric(df['column'], errors="coerce").notnull().all()
For all columns, you can iterate through columns or just use apply
df.apply(lambda s: pd.to_numeric(s, errors="coerce").notnull().all())
E.g.
df = pd.DataFrame({'col' : [1,2, 10, np.nan, 'a'],
'col2': ['a', 10, 30, 40 ,50],
'col3': [1,2,3,4,5.0]})
Outputs
col False
col2 False
col3 True
dtype: bool