Fastest way to count number of occurrences in a Python list

a = ['1', '1', '1', '1', '1', '1', '2', '2', '2', '2', '7', '7', '7', '10', '10']
print a.count("1")

It’s probably optimized heavily at the C level.

Edit: I randomly generated a large list.

In [8]: len(a)
Out[8]: 6339347

In [9]: %timeit a.count("1")
10 loops, best of 3: 86.4 ms per loop

Edit edit: This could be done with collections.Counter

a = Counter(your_list)
print a['1']

Using the same list in my last timing example

In [17]: %timeit Counter(a)['1']
1 loops, best of 3: 1.52 s per loop

My timing is simplistic and conditional on many different factors, but it gives you a good clue as to performance.

Here is some profiling

In [24]: profile.run("a.count('1')")
         3 function calls in 0.091 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.091    0.091 <string>:1(<module>)
        1    0.091    0.091    0.091    0.091 {method 'count' of 'list' objects}

        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Prof
iler' objects}



In [25]: profile.run("b = Counter(a); b['1']")
         6339356 function calls in 2.143 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    2.143    2.143 <string>:1(<module>)
        2    0.000    0.000    0.000    0.000 _weakrefset.py:68(__contains__)
        1    0.000    0.000    0.000    0.000 abc.py:128(__instancecheck__)
        1    0.000    0.000    2.143    2.143 collections.py:407(__init__)
        1    1.788    1.788    2.143    2.143 collections.py:470(update)
        1    0.000    0.000    0.000    0.000 {getattr}
        1    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Prof
iler' objects}
  6339347    0.356    0.000    0.356    0.000 {method 'get' of 'dict' objects}

Leave a Comment