I found that a particular sparse matrix constructor can achieve the desired result very efficiently. It’s a bit obscure but we can abuse it for this purpose. The function below can be used in nearly the same way as scipy.stats.binned_statistic but can be orders of magnitude faster
import numpy as np
from scipy.sparse import csr_matrix
def binned_statistic(x, values, func, nbins, range):
'''The usage is nearly the same as scipy.stats.binned_statistic'''
N = len(values)
r0, r1 = range
digitized = (float(nbins)/(r1 - r0)*(x - r0)).astype(int)
S = csr_matrix((values, [digitized, np.arange(N)]), shape=(nbins, N))
return [func(group) for group in np.split(S.data, S.indptr[1:-1])]
I avoided np.digitize
because it doesn’t use the fact that all bins are equal width and hence is slow, but the method I used instead may not handle all edge cases perfectly.