Efficiently Calculating a Euclidean Distance Matrix Using Numpy

You can take advantage of the complex type :

# build a complex array of your cells
z = np.array([complex(c.m_x, c.m_y) for c in cells])

First solution

# mesh this array so that you will have all combinations
m, n = np.meshgrid(z, z)
# get the distance via the norm
out = abs(m-n)

Second solution

Meshing is the main idea. But numpy is clever, so you don’t have to generate m & n. Just compute the difference using a transposed version of z. The mesh is done automatically :

out = abs(z[..., np.newaxis] - z)

Third solution

And if z is directly set as a 2-dimensional array, you can use z.T instead of the weird z[..., np.newaxis]. So finally, your code will look like this :

z = np.array([[complex(c.m_x, c.m_y) for c in cells]]) # notice the [[ ... ]]
out = abs(z.T-z)

Example

>>> z = np.array([[0.+0.j, 2.+1.j, -1.+4.j]])
>>> abs(z.T-z)
array([[ 0.        ,  2.23606798,  4.12310563],
       [ 2.23606798,  0.        ,  4.24264069],
       [ 4.12310563,  4.24264069,  0.        ]])

As a complement, you may want to remove duplicates afterwards, taking the upper triangle :

>>> np.triu(out)
array([[ 0.        ,  2.23606798,  4.12310563],
       [ 0.        ,  0.        ,  4.24264069],
       [ 0.        ,  0.        ,  0.        ]])

Some benchmarks

>>> timeit.timeit('abs(z.T-z)', setup='import numpy as np;z = np.array([[0.+0.j, 2.+1.j, -1.+4.j]])')
4.645645342274779
>>> timeit.timeit('abs(z[..., np.newaxis] - z)', setup='import numpy as np;z = np.array([0.+0.j, 2.+1.j, -1.+4.j])')
5.049334864854522
>>> timeit.timeit('m, n = np.meshgrid(z, z); abs(m-n)', setup='import numpy as np;z = np.array([0.+0.j, 2.+1.j, -1.+4.j])')
22.489568296184686

Leave a Comment

techhipbettruvabetnorabahisbahis forumu