Update – 2022
As pointed out by @Joooeey and @Ehtesh Choudhury, pandas
now has date_range
, which makes creating numpy.linspace
-like time series much simpler.
t = pd.date_range(start="2022-03-10",
end='2022-03-15',
periods=5)
If it’s important to have this time series as a numpy
array, simply
>>> t.values
array(['2022-03-10T00:00:00.000000000', '2022-03-11T06:00:00.000000000',
'2022-03-12T12:00:00.000000000', '2022-03-13T18:00:00.000000000',
'2022-03-15T00:00:00.000000000'], dtype="datetime64[ns]")
Original answer
Have you considered using pandas
? Using an approach from this possible duplicate question, you can make use of np.linspace
in the following way
import pandas as pd
start = pd.Timestamp('2015-07-01')
end = pd.Timestamp('2015-08-01')
t = np.linspace(start.value, end.value, 100)
t = pd.to_datetime(t)
To obtain an np.array
of the linear timeseries
In [3]: np.asarray(t)
Out[3]:
array(['2015-06-30T17:00:00.000000000-0700',
'2015-07-01T00:30:54.545454592-0700',
'2015-07-01T08:01:49.090909184-0700',
...
'2015-07-31T01:58:10.909090816-0700',
'2015-07-31T09:29:05.454545408-0700',
'2015-07-31T17:00:00.000000000-0700'], dtype="datetime64[ns]")