You need agg
by dictionary
and then rename
columns names:
d = {'Missed':'Sum1', 'Credit':'Sum2','Grade':'Average'}
df=df.groupby('Name').agg({'Missed':'sum', 'Credit':'sum','Grade':'mean'}).rename(columns=d)
print (df)
Sum1 Sum2 Average
Name
A 2 4 11
B 3 5 15
If want also create column from Name
:
df = (df.groupby('Name', as_index=False)
.agg({'Missed':'sum', 'Credit':'sum','Grade':'mean'})
.rename(columns={'Missed':'Sum1', 'Credit':'Sum2','Grade':'Average'}))
print (df)
Name Sum1 Sum2 Average
0 A 2 4 11
1 B 3 5 15
Solution with named aggregations:
df = df.groupby('Name', as_index=False).agg(Sum1=('Missed','sum'),
Sum2= ('Credit','sum'),
Average=('Grade','mean'))
print (df)
Name Sum1 Sum2 Average
0 A 2 4 11
1 B 3 5 15