Your model seems to correspond to a regression model for the following reasons:
-
You are using
linear
(the default one) as an activation function in the output layer (andrelu
in the layer before). -
Your loss is
loss="mean_squared_error"
.
However, the metric that you use- metrics=['accuracy']
corresponds to a classification problem. If you want to do regression, remove metrics=['accuracy']
. That is, use
model.compile(optimizer="adam",loss="mean_squared_error")
Here is a list of keras metrics for regression and classification (taken from this blog post):
Keras Regression Metrics
•Mean Squared Error: mean_squared_error, MSE or mse
•Mean Absolute Error: mean_absolute_error, MAE, mae
•Mean Absolute Percentage Error: mean_absolute_percentage_error, MAPE,
mape•Cosine Proximity: cosine_proximity, cosine
Keras Classification Metrics
•Binary Accuracy: binary_accuracy, acc
•Categorical Accuracy: categorical_accuracy, acc
•Sparse Categorical Accuracy: sparse_categorical_accuracy
•Top k Categorical Accuracy: top_k_categorical_accuracy (requires you
specify a k parameter)•Sparse Top k Categorical Accuracy: sparse_top_k_categorical_accuracy
(requires you specify a k parameter)