I wanted to help explain what’s going on here. An RSA “Public Key” consists of two numbers: the modulus (e.g. a 2,048 bit number) the exponent (usually 65,537) Using your RSA public key as an example, the two numbers are: Modulus: 297,056,429,939,040,947,991,047,334,197,581,225,628,107,021,573,849,359,042,679,698,093,131,908,015,712,695,688,944,173,317,630,555,849,768,647,118,986,535,684,992,447,654,339,728,777,985,990,170,679,511,111,819,558,063,246,667,855,023,730,127,805,401,069,042,322,764,200,545,883,378,826,983,730,553,730,138,478,384,327,116,513,143,842,816,383,440,639,376,515,039,682,874,046,227,217,032,079,079,790,098,143,158,087,443,017,552,531,393,264,852,461,292,775,129,262,080,851,633,535,934,010,704,122,673,027,067,442,627,059,982,393,297,716,922,243,940,155,855,127,430,302,323,883,824,137,412,883,916,794,359,982,603,439,112,095,116,831,297,809,626,059,569,444,750,808,699,678,211,904,501,083,183,234,323,797,142,810,155,862,553,705,570,600,021,649,944,369,726,123,996,534,870,137,000,784,980,673,984,909,570,977,377,882,585,701 Exponent: 65,537 The question then becomes how do we want to store these … Read more