rotated face detection

Here’s a simple one I wrote with Python cv2

It’s not the most efficient thing, and it uses the naive way suggested by etarion, but it works fairly well for just normal head tilting (It detect anything from -40 to 40 head tilt, which is roughly as much as you can tilt your head staying upright.

import cv2
from math import sin, cos, radians

camera =  cv2.VideoCapture(0)
face = cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml")

settings = {
    'scaleFactor': 1.3, 
    'minNeighbors': 3, 
    'minSize': (50, 50), 
    'flags': cv2.cv.CV_HAAR_FIND_BIGGEST_OBJECT|cv2.cv.CV_HAAR_DO_ROUGH_SEARCH
}

def rotate_image(image, angle):
    if angle == 0: return image
    height, width = image.shape[:2]
    rot_mat = cv2.getRotationMatrix2D((width/2, height/2), angle, 0.9)
    result = cv2.warpAffine(image, rot_mat, (width, height), flags=cv2.INTER_LINEAR)
    return result

def rotate_point(pos, img, angle):
    if angle == 0: return pos
    x = pos[0] - img.shape[1]*0.4
    y = pos[1] - img.shape[0]*0.4
    newx = x*cos(radians(angle)) + y*sin(radians(angle)) + img.shape[1]*0.4
    newy = -x*sin(radians(angle)) + y*cos(radians(angle)) + img.shape[0]*0.4
    return int(newx), int(newy), pos[2], pos[3]

while True:
    ret, img = camera.read()

    for angle in [0, -25, 25]:
        rimg = rotate_image(img, angle)
        detected = face.detectMultiScale(rimg, **settings)
        if len(detected):
            detected = [rotate_point(detected[-1], img, -angle)]
            break

    # Make a copy as we don't want to draw on the original image:
    for x, y, w, h in detected[-1:]:
        cv2.rectangle(img, (x, y), (x+w, y+h), (255,0,0), 2)

    cv2.imshow('facedetect', img)

    if cv2.waitKey(5) != -1:
        break

cv2.destroyWindow("facedetect")

Leave a Comment

Hata!: SQLSTATE[HY000] [1045] Access denied for user 'divattrend_liink'@'localhost' (using password: YES)