Short answer: you can’t. NumPy does not support jagged arrays natively.
Long answer:
>>> a = ones((3,))
>>> b = ones((2,))
>>> c = array([a, b])
>>> c
array([[ 1. 1. 1.], [ 1. 1.]], dtype=object)
gives an array that may or may not behave as you expect. E.g. it doesn’t support basic methods like sum
or reshape
, and you should treat this much as you’d treat the ordinary Python list [a, b]
(iterate over it to perform operations instead of using vectorized idioms).
Several possible workarounds exist; the easiest is to coerce a
and b
to a common length, perhaps using masked arrays or NaN to signal that some indices are invalid in some rows. E.g. here’s b
as a masked array:
>>> ma.array(np.resize(b, a.shape[0]), mask=[False, False, True])
masked_array(data = [1.0 1.0 --],
mask = [False False True],
fill_value = 1e+20)
This can be stacked with a
as follows:
>>> ma.vstack([a, ma.array(np.resize(b, a.shape[0]), mask=[False, False, True])])
masked_array(data =
[[1.0 1.0 1.0]
[1.0 1.0 --]],
mask =
[[False False False]
[False False True]],
fill_value = 1e+20)
(For some purposes, scipy.sparse
may also be interesting.)