The State Monad : a model of mutable state
The State monad is a purely functional environment for programs with state, with a simple API:
- get
- put
Documentation in the mtl package.
The State monad is commonly used when needing state in a single thread of control. It doesn’t actually use mutable state in its implementation. Instead, the program is parameterized by the state value (i.e. the state is an additional parameter to all computations). The state only appears to be mutated in a single thread (and cannot be shared between threads).
The ST monad and STRefs
The ST monad is the restricted cousin of the IO monad.
It allows arbitrary mutable state, implemented as actual mutable memory on the machine. The API is made safe in side-effect-free programs, as the rank-2 type parameter prevents values that depend on mutable state from escaping local scope.
It thus allows for controlled mutability in otherwise pure programs.
Commonly used for mutable arrays and other data structures that are mutated, then frozen. It is also very efficient, since the mutable state is “hardware accelerated”.
Primary API:
- Control.Monad.ST
- runST — start a new memory-effect computation.
- And STRefs: pointers to (local) mutable cells.
- ST-based arrays (such as vector) are also common.
Think of it as the less dangerous sibling of the IO monad. Or IO, where you can only read and write to memory.
IORef : STRefs in IO
These are STRefs (see above) in the IO monad. They don’t have the same safety guarantees as STRefs about locality.
MVars : IORefs with locks
Like STRefs or IORefs, but with a lock attached, for safe concurrent access from multiple threads. IORefs and STRefs are only safe in a multi-threaded setting when using atomicModifyIORef
(a compare-and-swap atomic operation). MVars are a more general mechanism for safely sharing mutable state.
Generally, in Haskell, use MVars or TVars (STM-based mutable cells), over STRef or IORef.