You can use some linear algebra to turn it into matrix ops. Note that what you need matrix D
where a[i]
is the i
th row of your original matrix and
D[i,j] = (a[i]-a[j])(a[i]-a[j])'
You can rewrite that into
D[i,j] = r[i] - 2 a[i]a[j]' + r[j]
Where r[i]
is squared norm of i
th row of the original matrix.
In a system that supports standard broadcasting rules you can treat r
as a column vector and write D
as
D = r - 2 A A' + r'
In TensorFlow you could write this as
A = tf.constant([[1, 1], [2, 2], [3, 3]])
r = tf.reduce_sum(A*A, 1)
# turn r into column vector
r = tf.reshape(r, [-1, 1])
D = r - 2*tf.matmul(A, tf.transpose(A)) + tf.transpose(r)
sess = tf.Session()
sess.run(D)
result
array([[0, 2, 8],
[2, 0, 2],
[8, 2, 0]], dtype=int32)