Algorithm to generate random 2D polygon

I took @MitchWheat and @templatetypedef’s idea of sampling points on a circle and took it a bit farther.

In my application I need to be able to control how weird the polygons are, ie start with regular polygons and as I crank up the parameters they get increasingly chaotic. The basic idea is as stated by @templatetypedef; walk around the circle taking a random angular step each time, and at each step put a point at a random radius. In equations I’m generating the angular steps as
equations for the angles and radii of the vertices

where theta_i and r_i give the angle and radius of each point relative to the centre, U(min, max) pulls a random number from a uniform distribution, and N(mu, sigma) pulls a random number from a Gaussian distribution, and clip(x, min, max) thresholds a value into a range. This gives us two really nice parameters to control how wild the polygons are – epsilon which I’ll call irregularity controls whether or not the points are uniformly space angularly around the circle, and sigma which I’ll call spikeyness which controls how much the points can vary from the circle of radius r_ave. If you set both of these to 0 then you get perfectly regular polygons, if you crank them up then the polygons get crazier.

I whipped this up quickly in python and got stuff like this:
some polygons I generated

Here’s the full python code:

import math, random
from typing import List, Tuple


def generate_polygon(center: Tuple[float, float], avg_radius: float,
                     irregularity: float, spikiness: float,
                     num_vertices: int) -> List[Tuple[float, float]]:
    """
    Start with the center of the polygon at center, then creates the
    polygon by sampling points on a circle around the center.
    Random noise is added by varying the angular spacing between
    sequential points, and by varying the radial distance of each
    point from the centre.

    Args:
        center (Tuple[float, float]):
            a pair representing the center of the circumference used
            to generate the polygon.
        avg_radius (float):
            the average radius (distance of each generated vertex to
            the center of the circumference) used to generate points
            with a normal distribution.
        irregularity (float):
            variance of the spacing of the angles between consecutive
            vertices.
        spikiness (float):
            variance of the distance of each vertex to the center of
            the circumference.
        num_vertices (int):
            the number of vertices of the polygon.
    Returns:
        List[Tuple[float, float]]: list of vertices, in CCW order.
    """
    # Parameter check
    if irregularity < 0 or irregularity > 1:
        raise ValueError("Irregularity must be between 0 and 1.")
    if spikiness < 0 or spikiness > 1:
        raise ValueError("Spikiness must be between 0 and 1.")

    irregularity *= 2 * math.pi / num_vertices
    spikiness *= avg_radius
    angle_steps = random_angle_steps(num_vertices, irregularity)

    # now generate the points
    points = []
    angle = random.uniform(0, 2 * math.pi)
    for i in range(num_vertices):
        radius = clip(random.gauss(avg_radius, spikiness), 0, 2 * avg_radius)
        point = (center[0] + radius * math.cos(angle),
                 center[1] + radius * math.sin(angle))
        points.append(point)
        angle += angle_steps[i]

    return points
def random_angle_steps(steps: int, irregularity: float) -> List[float]:
    """Generates the division of a circumference in random angles.

    Args:
        steps (int):
            the number of angles to generate.
        irregularity (float):
            variance of the spacing of the angles between consecutive vertices.
    Returns:
        List[float]: the list of the random angles.
    """
    # generate n angle steps
    angles = []
    lower = (2 * math.pi / steps) - irregularity
    upper = (2 * math.pi / steps) + irregularity
    cumsum = 0
    for i in range(steps):
        angle = random.uniform(lower, upper)
        angles.append(angle)
        cumsum += angle

    # normalize the steps so that point 0 and point n+1 are the same
    cumsum /= (2 * math.pi)
    for i in range(steps):
        angles[i] /= cumsum
    return angles
def clip(value, lower, upper):
    """
    Given an interval, values outside the interval are clipped to the interval
    edges.
    """
    return min(upper, max(value, lower))

@MateuszKonieczny here is code to create an image of a polygon from a list of vertices.

vertices = generate_polygon(center=(250, 250),
                            avg_radius=100,
                            irregularity=0.35,
                            spikiness=0.2,
                            num_vertices=16)

black = (0, 0, 0)
white = (255, 255, 255)
img = Image.new('RGB', (500, 500), white)
im_px_access = img.load()
draw = ImageDraw.Draw(img)

# either use .polygon(), if you want to fill the area with a solid colour
draw.polygon(vertices, outline=black, fill=white)

# or .line() if you want to control the line thickness, or use both methods together!
draw.line(vertices + [vertices[0]], width=2, fill=black)

img.show()

# now you can save the image (img), or do whatever else you want with it.

Leave a Comment

Hata!: SQLSTATE[HY000] [1045] Access denied for user 'divattrend_liink'@'localhost' (using password: YES)