Spark >= 2.2
from pyspark.sql.functions import to_timestamp
(sc
.parallelize([Row(dt="2016_08_21 11_31_08")])
.toDF()
.withColumn("parsed", to_timestamp("dt", "yyyy_MM_dd HH_mm_ss"))
.show(1, False))
## +-------------------+-------------------+
## |dt |parsed |
## +-------------------+-------------------+
## |2016_08_21 11_31_08|2016-08-21 11:31:08|
## +-------------------+-------------------+
Spark < 2.2
It is nothing that unix_timestamp
cannot handle:
from pyspark.sql import Row
from pyspark.sql.functions import unix_timestamp
(sc
.parallelize([Row(dt="2016_08_21 11_31_08")])
.toDF()
.withColumn("parsed", unix_timestamp("dt", "yyyy_MM_dd HH_mm_ss")
# For Spark <= 1.5
# See issues.apache.org/jira/browse/SPARK-11724
.cast("double")
.cast("timestamp"))
.show(1, False))
## +-------------------+---------------------+
## |dt |parsed |
## +-------------------+---------------------+
## |2016_08_21 11_31_08|2016-08-21 11:31:08.0|
## +-------------------+---------------------+
In both cases the format string should be compatible with Java SimpleDateFormat
.