Functions don’t just have types: They ARE Types. And Kinds. And Sorts. Help put a blown mind back together

You touch so many interesting points in your question, so I am
afraid this is going to be a long answer 🙂

Kind of (->)

The kind of (->) is * -> * -> *, if we disregard the boxity GHC
inserts. But there is no circularity going on, the ->s in the
kind of (->) are kind arrows, not function arrows. Indeed, to
distinguish them kind arrows could be written as (=>), and then
the kind of (->) is * => * => *.

We can regard (->) as a type constructor, or maybe rather a type
operator. Similarly, (=>) could be seen as a kind operator, and
as you suggest in your question we need to go one ‘level’ up. We
return to this later in the section Beyond Kinds, but first:

How the situation looks in a dependently typed language

You ask how the type signature would look for a function that takes a
value and returns a type. This is impossible to do in Haskell:
functions cannot return types! You can simulate this behaviour using
type classes and type families, but let us for illustration change
language to the dependently typed language
Agda. This is a
language with similar syntax as Haskell where juggling types together
with values is second nature.

To have something to work with, we define a data type of natural
numbers, for convenience in unary representation as in
Peano Arithmetic.
Data types are written in
GADT style:

data Nat : Set where
    Zero : Nat
    Succ : Nat -> Nat

Set is equivalent to * in Haskell, the “type” of all (small) types,
such as Natural numbers. This tells us that the type of Nat is
Set, whereas in Haskell, Nat would not have a type, it would have
a kind, namely *. In Agda there are no kinds, but everything has
a type.

We can now write a function that takes a value and returns a type.
Below is a the function which takes a natural number n and a type,
and makes iterates the List constructor n applied to this
type. (In Agda, [a] is usually written List a)

listOfLists : Nat -> Set -> Set
listOfLists Zero     a = a
listOfLists (Succ n) a = List (listOfLists n a)

Some examples:

listOfLists Zero               Bool = Bool
listOfLists (Succ Zero)        Bool = List Bool
listOfLists (Succ (Succ Zero)) Bool = List (List Bool)

We can now make a map function that operates on listsOfLists.
We need to take a natural number that is the number of iterations
of the list constructor. The base cases are when the number is
Zero, then listOfList is just the identity and we apply the function.
The other is the empty list, and the empty list is returned.
The step case is a bit move involving: we apply mapN to the head
of the list, but this has one layer less of nesting, and mapN
to the rest of the list.

mapN : {a b : Set} -> (a -> b) -> (n : Nat) ->
       listOfLists n a -> listOfLists n b
mapN f Zero     x         = f x
mapN f (Succ n) []        = []
mapN f (Succ n) (x :: xs) = mapN f n x :: mapN f (Succ n) xs

In the type of mapN, the Nat argument is named n, so the rest of
the type can depend on it. So this is an example of a type that
depends on a value.


As a side note, there are also two other named variables here,
namely the first arguments, a and b, of type Set. Type
variables are implicitly universally quantified in Haskell, but
here we need to spell them out, and specify their type, namely
Set. The brackets are there to make them invisible in the
definition, as they are always inferable from the other arguments.

Set is abstract

You ask what the constructors of (->) are. One thing to point out
is that Set (as well as * in Haskell) is abstract: you cannot
pattern match on it. So this is illegal Agda:

cheating : Set -> Bool
cheating Nat = True
cheating _   = False

Again, you can simulate pattern matching on types constructors in
Haskell using type families, one canoical example is given on
Brent Yorgey’s blog.
Can we define -> in the Agda? Since we can return types from
functions, we can define an own version of -> as follows:

_=>_ : Set -> Set -> Set
a => b = a -> b

(infix operators are written _=>_ rather than (=>)) This
definition has very little content, and is very similar to doing a
type synonym in Haskell:

type Fun a b = a -> b

Beyond kinds: Turtles all the way down

As promised above, everything in Agda has a type, but then
the type of _=>_ must have a type! This touches your point
about sorts, which is, so to speak, one layer above Set (the kinds).
In Agda this is called Set1:

FunType : Set1
FunType = Set -> Set -> Set

And in fact, there is a whole hierarchy of them! Set is the type of
“small” types: data types in haskell. But then we have Set1,
Set2, Set3, and so on. Set1 is the type of types which mentions
Set. This hierarchy is to avoid inconsistencies such as Girard’s
paradox.

As noticed in your question, -> is used for types and kinds in
Haskell, and the same notation is used for function space at all
levels in Agda. This must be regarded as a built in type operator,
and the constructors are lambda abstraction (or function
definitions). This hierarchy of types is similar to the setting in
System F omega, and more
information can be found in the later chapters of
Pierce’s Types and Programming Languages.

Pure type systems

In Agda, types can depend on values, and functions can return types,
as illustrated above, and we also had an hierarchy of
types. Systematic investigation of different systems of the lambda
calculi is investigated in more detail in Pure Type Systems. A good
reference is
Lambda Calculi with Types by Barendregt,
where PTS are introduced on page 96, and many examples on page 99 and onwards.
You can also read more about the lambda cube there.

Leave a Comment