In-order, Pre-order, and Post-order traversals are Depth-First traversals.
For a Graph, the complexity of a Depth First Traversal is O(n + m), where n is the number of nodes, and m is the number of edges.
Since a Binary Tree is also a Graph, the same applies here.
The complexity of each of these Depth-first traversals is O(n+m).
Since the number of edges that can originate from a node is limited to 2 in the case of a Binary Tree, the maximum number of total edges in a Binary Tree is n-1, where n is the total number of nodes.
The complexity then becomes O(n + n-1), which is O(n).